Abstracts (first author)


Genetic interactions between beneficial mutations in Saccharomyces cerevisiae

Author(s): Ono J, Gerstein AC, Otto SP


Independently evolving populations may adapt to similar selection pressures via different genetic changes. The interactions between such changes can then inform us about the underlying fitness landscape, allowing us to determine whether gene flow would be facilitated or hampered following secondary contact. We used Saccharomyces cerevisiae to measure the genetic interactions between independently evolved first-step mutations to the fungicide nystatin. We found that genetic interactions are prevalent, even among the first adaptive mutations. In the adaptive environment, the more beneficial mutation often masks the other, less beneficial one. This would allow a population fixed for the less beneficial allele to acquire and fix a more beneficial allele - thus continuing to climb the adaptive peak. In one case, however, reciprocal sign epistasis was observed, indicative of a fitness valley between two peaks. This is surprising given the small number of mutations combined and the relative simplicity of the adaptive environment.



Chairman: Octávio S. Paulo
Tel: 00 351 217500614 direct
Tel: 00 351 217500000 ext22359
Fax: 00 351 217500028
email: mail@eseb2013.com


XIV Congress of the European Society for Evolutionary Biology

Organization Team
Department of Animal Biology (DBA)
Faculty of Sciences of the University of Lisbon
P-1749-016 Lisbon


Computational Biology & Population Genomics Group